
Talanta 68 (2005) 382–387

Usefulness of chemometrics and mass spectrometry-based electronic
nose to classify Australian white wines by their varietal origin

Daniel Cozzolinoa,b,∗, Heather E. Smytha,b,c,1, Wies Cynkara,b,1,
Robert G. Dambergsa,b,1, Mark Gishena,b,1

a The Australian Wine Research Institute, Chemistry Department, Waite Road, Urrbrae, P.O. Box 197,
Glen Osmond - Urrbrae Adelaide, Adelaide, SA 5064, Australia

b The Cooperative Research Centre for Viticulture, P.O. Box 154, Glen Osmond, SA 5064, Australia
c School of Agriculture and Wine, Faculty of Sciences, The University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia

Available online 3 October 2005

Abstract

A combination of mass spectrometry-based electronic nose (MS enose) and chemometrics was explored to classify two Australian white wines
according to their varietal origin namely Riesling and unwooded Chardonnay. The MS enose data were analysed using principal components
analysis (PCA), discriminant partial least squares (DPLS) and linear discriminant analysis (LDA) applied to principal components scores and
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validated using full cross validation (leave one out). DPLS gave the highest levels of correct classification for both varieties (>90%). LDAd
correctly 73% of unwooded Chardonnay and 82% of Riesling wines. Even though the conventional analysis provides fundamental i
about the volatile compounds present in the wine, the MS enose method has a series of advantages over conventional analytical technique
simplicity of the sample-preparation and reduced time of analysis and might be considered as a more convenient choice for routine pro
in an industrial environment. The work reported here is a feasibility study and requires further development with considerably more c
samples of different varieties. Further studies are needed in order to improve the calibration specificity, accuracy and robustness, and
discrimination to other wine varieties or blends.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The main challenge of any quality-control system to be used
in a modern and competitive food industry is to replace time-
consuming laboratory analysis used in both quality monitoring
and process control, with relatively fast and cheaper measure-
ments suitable for routine operation. The application of chemo-
metrics techniques to mass spectrometry (MS)-based electronic
nose (enose) data has been investigated by several authors as a
means of differentiating food samples on the basis of both aroma
and volatile compounds in the food industry[1]. Food product

Abbreviations: DPLS, discriminant partial least squares; GC–MS, gas
chromatography–mass spectrometry; LDA, linear discriminant analysis; MS
e nose, mass spectrometry electronic nose; PCA, principal component analy-
sis; PCs, principal components; Vis-NIR, visible and near infrared
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characterisation based on the analysis of their aroma prop
is a widely used technique[2–3]. Nowadays, analytical solutio
for food composition imply the use of gas chromatography–m
spectrometry (GC–MS) techniques, but analysis can be
consuming, due to sample-preparation steps and comple
interpretation. Recent research has shown that rapid analy
volatile fractions by MS without chromatographic separa
produces signals containing useful information that can be
to produce a fingerprint of any given food based on its ar
profile [4–5]. Few studies have examined the use of electr
noses or gas sensors to characterise the aroma of wine[1,6],
mainly because major compounds in the samples heads
such as ethanol, cause interference with the gas sensor[1]. This
limitation does not exist with MS enose where the headspac
monitored and the whole spectra are analysed[1,6]. Therefore
MS e nose has a great potential to be used for monitoring
quality of wine and other alcoholic beverages[1,5–8]. The MS
e nose and gas sensor array techniques have been applied
classification of foods (fish and meat), beverages (wine,
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and spirits) and have also been used for the quality control of
industrial products such as paper[1,5–8]. Most of the references
in the literature on the application of such techniques in wine
are related to monitoring aroma and other volatile compounds in
either ferments or in the final wine product[9,12–14]. For exam-
ple, the use of MS enose was explored as a rapid technique for
fingerprinting of volatiles in wines before and after malolactic
fermentation, in wine stored in oak barrel types and in Semillon
wine bottled with different closures[14].

Multivariate methods and chemometrics have been used to
interpret and extract information from complex data obtained
by instrumental techniques in the analysis of foods and wine
[2,10,15]. The application of multivariate statistical techniques
such as principal component analysis (PCA) or discriminant
analysis (e.g., linear discriminant analysis, LDA, or discriminant
partial least squares, DPLS) provides the possibility to use and
understand the data generated by instrumental techniques based
on the overall properties of the sample and perform a classifi-
cation without the need for additional compositional chemical
data[2,15].

A single MS enose mass spectrum might provide means of
characterising complex features of wine including aroma, sta-
bility (e.g., protein or heat stability), oxidation, quality grading
or blending. In addition, it could assist in determining the rela-
tionship between the chemical composition and sensory charac-
teristics of wine. Despite the large amount of research carried
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at the time and were generally representative of the range of
retail prices, regions, and vintages of Riesling and unwooded
Chardonnay wines available in the Australian market. Of the
Riesling wines, vintages comprised 2002, 2001, 1999, 1997,
1996 and 1993. The Chardonnay wines were all from 2002
except for three samples made in the 2001 vintage. Summary
information of the chemical composition of the wines of each
variety is detailed in previous reports[16–17].

2.2. Mass spectrometry electronic nose (MS e nose)

To measure the volatile patterns of the two wine varieties,
5 mL of wine were sealed in 10 mL headspace vials. Sam-
ples were analysed on theChemical Sensor (HP 4440, Hewlett
Packard) equipped with headspace sampler (HP 7694, Model G
1290 A)[18–20]. The experimental conditions of the headspace
sampler were as follows: oven temperature 75◦C, loop tem-
perature 90◦C, transfer line temperature 95◦C, vial equilibra-
tion time 20 min, headspace cycle time 4.2 min, pressurise time
0.3 min, loop fill time 0.15 min, loop equilibration time 0.02 min,
and injection time 0.5 min. The carrier gas was helium, pressure
4.2 psi and the vial was pressurized at 14 psi. The total analy-
sis time per sample was approximately 25 min. The components
in the headspace of the vials were passed directly to the mass
detector without any chromatographic separation or sample pre-
treatment. In this way, for any given measurement, the resulting
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here is only limited information published concerning the
f chemometrics on headspace gas sensor data to differe
ine samples on the basis of their variety[11,12,14].
The study presented here is a part of the ongoing evaluat

apid instrumental methods being carried out by The Austr
ine Research Institute in order to adapt competitive and m

rn instrumental techniques for the Australian wine industr
The aim of this work was to investigate the potential of

nose as a rapid and low-cost technique to discriminate bet
wo commercial white wine varieties available in Australia (
iesling and unwooded Chardonnay) using the mass spec

heir volatile constituents without time-consuming analysi
hemical composition by GC–MS.

. Materials and methods

.1. Wine samples

A total of 150 white wine samples of two varieties, nam
iesling and unwooded Chardonnay, were analysed. Of the
20 samples were selected from an experiment that was pa
roader wine flavour study[16,31]with three replicate bottles
ach (same vintage, label and closure) of 20 individual com
ial Riesling or unwooded Chardonnay wine labels. Additio
0 samples of Riesling were sourced from a consumer
ory experiment. The wines selected were chosen from a
ample set by a series of preliminary informal sensory as
ents, with the primary criteria for selection being that the w

hould exhibit the broadest possible range of sensory prop
ithin each variety. All samples were commercially availa
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ass spectrum gives a fingerprint of the wine volatiles. Pos
on electron impact spectra at 70 eV were recorded in the r
/z 50–180. Additionally, in each MS enose run, a solution o
2% ethanol was used as a marker to identify the ions re
ith ethanol. Data and instrument control was achieved wit
irouette software[18–20]. Operational conditions and pro
ols used in this study were similar to those reported elsew
14].

.3. Chemometrics

Data from MS enose were exported from thePirouette soft-
are for chemometric analysis intoThe Unscrambler software

version 9.1, CAMO ASA, Norway). Principal component an
sis (PCA), discriminant partial least squares (DPLS) and li
iscriminant analysis (LDA) were performed with full cross v

dation[21–23]. Full cross validation (leave one out) was u
o validate the models developed. The maximum number o
ors (terms) in the PLS models were selected by the criteri
he lowest number of factors that gave the closest to minim
alue of the PRESS (prediction residual error sum of squ
unction in order to avoid overfitting of the models.

As a pre-treatment before both PCA and DPLS analysi
ata were centered[21–24]. Before performing principal com
onent analysis, MS enose data were pre-processed in o

o account for baseline effects, retention time drifts and v
ions in peak shapes between the samples analysed[21–24]. In
his study, auto-scaling was performed by smoothing (mo
verage of each of seven data points) and mean normali
rovided byThe Unscrambler software was used. The movi
verage reduced the noise and made it easier to observe th
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and end of the peaks in the spectra of each wine sample analysed.
Mean normalisation is the most classical case of normalisation.
It consists of dividing each row of a data matrix by its average,
thus neutralising the influence of the hidden factors, such as
noise or drift between analyses. It is equivalent to replacing the
original variables by a profile value centred around 1. Only the
relative values of the variables are used to describe the sample,
and the information carried by their absolute level is dropped.
This is appropriate as all variables are measured in the same
unit, and their values are assumed to be proportional to a factor,
which cannot be directly taken into account in the analysis[22].
For instance, this transformation is used in chromatography to
express the results in the same units for all samples. This normal-
isation was used in this study because the samples were analysed
on different days and to eliminate the effect of the differences
in the alcohol concentrations of the samples.

Principal component analysis (PCA) is a well-known tech-
nique used for reducing the dimensionality of the data, detecting
the number of components and visualising the outliers. It is one
of the most commonly applied techniques in multivariate data
analysis[21–24]. PCA is a mathematical procedure for resolving
sets of data into orthogonal components whose linear combi-
nations approximate the original data to any desired degree of
accuracy[21–24]. In this study, PCA was used to derive the
first 20 principal components from the MS enose data and to
examine the possible grouping of samples.
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Fig. 1. Mean mass spectra of Riesling and unwooded Chardonnay wines
obtained by MSenose.

in the wine matrix[17,25,27], the identification of the ions or
relating them to the chemical composition of the headspace is
beyond the scope of this study.

A PCA model with three PCs explains 90% of the variation
in the MS enose data for the Riesling and unwooded Chardon-
nay wines. The score plot for the first two principal components
(PC1 versus PC2) is shown inFig. 2. The score plot reveals that
separation along PC1, which accounted for 62% of the varia-
tion in the sample set, while separation along PC2 accounted for
17% of the variation in the sample set.Fig. 3shows the eigenvec-
tors for the first three PCs indicating only the ions betweenm/z
100 and 180. The visual inspection of the eigenvectors confirms
that the fragment ionsm/z 101, 118, 127 and 147 are important
variables in the differentiation of the two wine varieties. From
these results and those from an additional study[17,31], it is
possible that volatile compounds in the wine matrix associated
with esters might explain the separation between the varieties.
Similar results were reported by other authors[27].

Table 1compares the statistics for the DPLS models before
and after normalisation as pre-treatment of the MS enose
data. The results highlighted that normalisation substantially
improves the RMSECV for the calibration models, confirming
the assumption that drifts or changes in the instrument might
affect the calibrations when multivariate methods are applied.
The results (R2) show that more than 90% of the variations in
the DPLS models were explained when normalisation was used
c

sing
D sing
a 3%
The DPLS models were developed using a no metric du
ariable (set to 1 for Riesling, and 2 for unwooded Chard
ay) to test the ability of the method to discriminate betwee

wo white wine varieties; this approach is often referred to
iscriminant PLS (DPLS)[16,21–24]. The small number of sa
les used prevented the development of a definitive pred
odel for DPLS but was still sufficient to enable a prelimin
ssessment of the potential of this technique to classify th
ine varieties.
Linear discriminant analysis (LDA) like DPLS regressio

supervised classification technique where the number of
ories and the sample that belong to each category are prev
efined. The method supplies a number of orthogonal linea
riminant functions, equal to the number of categories m
ne, that allow the samples to be classified in one or anothe
gory[21,23]. LDA was carried out usingJMP software (versio
.01, SAS Institute Inc., Cary, NC, USA) on the PCA sam
cores on components 1 and 2, which gave the highest le
eparation in the PCA models developed. Statistics calcu
or the calibrations included the coefficient of determinatio
alibration (R2) and the root mean square of the standard
f cross validation (RMSECV).

. Results and discussion

Fig. 1shows the mean mass spectrum of volatiles for the R
ing and unwooded Chardonnay wines analysed. It was obs
hat some differences exist between the two wine varieties
ons atm/z 55, 61, 64, 70 and 73, and greater differences
ound atm/z 88, 101, 115, 127 and 147. Although these i
ight be characteristic of esters and other volatile compo
e

s

ompared with non-normalisation (less than 70%).
Table 2compares the classification results obtained u

PLS and LDA classification methods after normalisation u
ll the ions (m/z50–180). Correct classification levels of 9
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Fig. 2. Score plot of the first two principal components in MSenose profiles of Riesling (R) and unwooded Chardonnay wines (Ch).

Fig. 3. Eigenvectors for the first three principal components (rangem/z
100–180).

Table 1
Comparison of DPLS calibration statistics before and after smoothing and nor-
malisation of the MS enose data (n= 150)

RMSECV R2 Number of PLS factors

Smoothing
m/z 50–180 0.36 0.70 3
m/z 100–180 0.40 0.40 2

Smoothing and normalization
m/z 50–180 0.13 0.94 5
m/z 100–180 0.16 0.92 5

RMSECV: root mean square of the standard error of cross validation,R2: coef-
ficient of determination in calibration.

Table 2
Percentage of correct classification results for LDA and DPLS analysis of white
wine varieties

% Correct classification

LDA DPLS

Riesling (n= 75) 82 93
Unwooded Chardonnay (n= 75) 73 93

were achieved by DPLS models in both wine varieties. On
the other hand, LDA showed lower levels of correct classifi-
cation, 73% and 82% for unwooded Chardonnay and Riesling
wines, respectively. Note that only two PCs were used when
LDA models were developed and this might explain the low %
of correct classification obtained. It was noticed that old Ries-
ling wines (1993, 1996 and 1997 vintages) were misclassified
using both DPLS and LDA discriminant methods. As might be
expected, these wines had low ester content and were more oxi-
dised than the other Riesling wines used in this study[17,28].
Young Chardonnay wines were also misclassified, possibly due
to their fruity and fresh characters, which gave similar aroma
notes to those observed in typical Australian Riesling wines
[26–28,31].

Fig. 4shows the DPLS regression plot for the discrimination
of both white wine varieties using MS enose data. Generally,
there was observed a good separation of samples by variety;
however, some samples did overlap. These results were consis-
tent with a previous report using Vis-NIR, where overlap among

F don-
n

ig. 4. Discriminant PLS (DPLS) plot of Riesling (1) and unwooded Char
ay (2) wines.
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samples was also observed[16]. It is important to note that the
samples used in the current study were commercially available
bottles of wine and could not be completely verified in terms
of their authenticity other than by the claim made on the label
[16,29]. It is therefore possible that some of the samples were not
100% of the variety as claimed, which would explain the overlap.
It should be noted that according to the Australian regulations
for the label to claim a single variety, the minimum content
of that variety must be 85%[29]. In fact, it was verified by the
winemakers that some Chardonnay samples were blended either
with Riesling (up to 5% in some cases) or with other white Aus-
tralian varieties (e.g., Semillon, Sauvignon Blanc). Therefore,
this result suggests that discrimination between varieties is pos-
sible, and that different aroma properties or volatile compounds
present in the samples were associated with either characteristics
of the variety, winemaking style or yeast strain. Similar results
were found by other authors using similar wines (one Riesling
and one Chardonnay) analysed by MS enose[30].

It is well known that ethanol is the major volatile component
in the wine matrix, thus some interference can be expected with
the MS enose analysis. According to other authors, ions related
with ethanol could appear around them/z ratios 45 and 46[5].
Previous studies using the same varieties confirmed the existence
of statistically significant differences between alcohol content of
the varieties for part of the sample set used in this study[16].
Therefore, the scan range chosen for the present study for the
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Even though the conventional analysis based on GC–MS pro-
vides fundamental information about the volatile compounds
presents in the wine, the MS enose method has advantages of
simplicity of sample-preparation and reduced time of analysis.
Hence, conventional GC–MS methodology might be considered
more appropriate when detailed compositional characterisation
is required, while MS enose might be a choice for routine moni-
toring or screening of many samples. It should be considered that
one additional benefit of this new approach to wine analysis is
that volatile profiling of samples might be often more useful than
identification and quantification of individual compounds[30].
From the results obtained it can be concluded that PCA, LDA or
DPLS techniques applied to MS enose data offer the possibility
of classify Riesling and unwooded Chardonnay wines. Further
studies are needed in order to improve the calibration speci-
ficity, accuracy and robustness, and to extend the discrimination
to other wine varieties or blends. The work reported here is only
a feasibility study and requires further development with con-
siderably more commercial samples of different varieties before
its full potential can be realised and it is ready for adoption by
the wine industry.
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